Abstract

The current paper deals with 8-hydroxyquinoline derived p-halo N4-phenyl substituted thiosemicarbazones, their crystal structures, spectral characterization and in vitro cytotoxic studies of Co(III), Ni(II) and Cu(II) complexes. The molecular structures of the ligands, (E)-4-(4-halophenyl)-1-((8-hydroxyquinoline-2-yl)methylene)thiosemicarbazones (halo = fluoro/chloro/bromo) are determined by single crystal X-ray diffraction method. The crystal structures reveal that the ligands are non-planar and exist in their thioamide tautomeric forms. The various physicochemical investigations of the synthesized complexes reveal metal to ligand stoichiometry to be 1:2 in Co(III) complexes whereas 1:1 in Ni(II) and Cu(II) complexes. The ligands coordinate in a tridentate NNS fashion around Co(III) centers to form an octahedral geometry and square planar geometry around Ni(II) and Cu(II) metal centers. The oxidation of Co(II) to Co(III) is observed on complexation. The synthesized compounds are subjected to in vitro cytotoxicity studies. When compared to bare ligands, the complexes show enhancement of the antiproliferative activity against MCF-7, breast cancer cell lines. The Co(III) complexes of fluoro and bromo derivatives of ligands have displayed remarkable results with roughly two fold increase in their activity in correlation to the standard drug, Paclitaxel. Moreover, the fluorescence microscopy images of cells stained with acridine orange-ethidium bromide suggest an apoptotic mode of cell death.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.