Abstract

Previous studies have reported a neuroprotective effect of 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) against traumatic brain injury. In accordance with the Marmarou method, rat models of diffuse axonal injury were established. 8-OH-DPAT was intraperitoneally injected into model rats. 8-OH-DPAT treated rats maintained at constant temperature served as normal temperature controls. TUNEL results revealed that neural cell swelling, brain tissue necrosis and cell apoptosis occurred around the injured tissue. Moreover, the number of Bax-, Bcl-2- and caspase-3-positive cells increased at 6 hours after diffuse axonal injury, and peaked at 24 hours. However, brain injury was attenuated, the number of apoptotic cells reduced, Bax and caspase-3 expression decreased, and Bcl-2 expression increased at 6, 12, 24, 72 and 168 hours after diffuse axonal injury in normal temperature control and in 8-OH-DPAT-intervention rats. The difference was most significant at 24 hours. All indices in 8-OH-DPAT-intervention rats were better than those in the constant temperature group. These results suggest that 8-OH-DPAT inhibits Bax and caspase-3 expression, increases Bcl-2 expression, and reduces neural cell apoptosis, resulting in neuroprotection against diffuse axonal injury. This effect is associated with a decrease in brain temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.