Abstract

AbstractAll‐solid‐state lithium batteries (ASSLBs), as the next‐generation energy storage system, potentially bridge the gap between high energy density and operational safety. However, the application of ASSLBs is technically handicapped by the extremely weak interfacial contact and dendrite growth that is prone to unstabilize solid electrolyte interphase (SEI) with limited electrochemical performance. In this contribution, air‐stable and interface‐compatible solid electrolyte/lithium integration is proposed by in situ copolymerization of poly(ethylene glycol methacrylate)‐Li1.5Al0.5Ge1.5(PO4)3‐lithium (PEGMA‐LAGP‐Li). The first‐of‐this‐kind hierarchy provides a promising synergy of flexibility‐rigidity (Young's modulus 3 GPa), high ionic conductivity (2.37 × 10−4 S cm−1), high lithium‐ion transfer number (tLi+ = 0.87), and LiF‐rich SEI, all contributing to homogenized lithium‐ion flux, significantly prolonged cycle stability (>3500 h) and obvious dendrite suppression for high‐performance ASSLBs. Furthermore, the integration protects lithium from air corrosion, providing insights into a novel interface‐enhancement paradigm and realizing the first ASSLBs assembly in ambient conditions without any loss of specific capacity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.