Abstract

Rn7SK, a highly conserved small nuclear non-coding RNA, controls Polymerase II transcription machinery by activating of the Positive Transcriptional Elongation Factor b (P-TEFb). Apart from its role in transcriptional regulation, the potential functions of Rn7SK in cell apoptosis are poorly understood. In a previous study, we demonstrated that overexpression of 7SK induces apoptosis in HEK cells. However, it remains unclear whether 7SK-mediated apoptosis induction is exerted through the intrinsic or extrinsic pathways. Rn7SK was overexpressed in HEK 293T cell line using Lipofectamine 2000 reagent to investigate its potential apoptotic functions. The overexpression of Rn7SK resulted in reduced cell viability through the induction of apoptosis, as evidenced by MTT assay and Annexin V/PI staining. Concurrently, alterations in the expression levels of key apoptosis-related genes were observed, as determined by quantitative RT-PCR. Furthermore, Rn7SK overexpression led to a decrease in cell proliferation, as assessed by colony formation assay and growth curve analysis. This reduction was associated with downregulated expression of key proliferative-related genes. Additionally, the migration and invasion capabilities of cells were significantly inhibited upon upregulation of Rn7SK, as demonstrated by transwell assays. This study suggests the apoptotic role of 7SK through both intrinsic and extrinsic pathways, necessitating further investigation into its underlying mechanisms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call