Abstract

The D3 dopamine receptor is expressed primarily in limbic brain areas, and appears to play an inhibitory role in rodent locomotor behavior. Evidence suggests a potential role for the D3 receptor in the pathology of neuropsychiatric disease. Progress in elucidating D3 receptor function has been hampered, however, by a lack of well-characterized, selective ligands and by conflicting information regarding the behavioral phenotype of D3 receptor knockout mice. Here, we describe studies evaluating the behavioral effects of (+/-)-7-hydroxy-N,N-di-n-propyl-2-aminotetralin (7-OH-DPAT) and PD 128907, two D3 receptor agonists whose in vivo selectivity has been a topic of considerable controversy. We demonstrate that both compounds inhibit locomotion under novel environmental conditions in wild-type (WT) mice, but are without measurable behavioral effect under identical conditions in D3 receptor knockout mice. Additionally, we demonstrate that at low, D3 selective doses, these compounds are without behavioral effect in both WT and D3 receptor knockout mice that have acclimated to the testing environment. These findings suggest that D3 receptor stimulation inhibits novelty-stimulated locomotion, and establish conditions for the use of 7-OH-DPAT and PD 128907 as D3 receptor agonists in vivo. Potential implications of these observations are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.