Abstract

This review reports on the synthesis of 7-deazapurine (pyrrolo[2,3-d]pyrimidine) 2-deoxyribonucleosides, including β-D- and β-L-enantiomers, fluoro derivatives, and 2,3-dideoxyribonucleosides. It covers the various aspects of convergent nucleoside synthesis. Stereochemically defined α-D and α-L 2-deoxyribonucleosides as well as sugar derivatives were prepared by nucleobase anion glycosylation. This glycosylation reaction is regioselective for the pyrrole nitrogen and stereoselective for β-nucleoside formation. Common glycosylation protocols lead to 7-deazapurine 2-deoxyribonucleosides with unusual glycosylation sites. 7-Deazapurine 2,3- dideoxyribonucleosides were also obtained from 2-deoxy- or 3-deoxyribonucleosides by Barton-McCombie deoxygenation, by elimination of sugar hydroxyl groups or by anion glycosylation. Another aspect of the review is the functionalization of pyrrolo[2,3-d]pyrimidine nucleosides. A broad range of reporter groups were introduced by the Sonogashira cross coupling or the copper(I)-catalyzed Huisgen- Meldal-Sharpless “click” reaction. The application of 7-deazapurine nucleosides as antiviral or anticancer agents, and the use of 7- deazapurine nucleoside triphosphates in the Sanger dideoxy DNA-sequencing are also reported.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.