Abstract

Adoptive transfer of T cells redirected to tumor-associated antigens (TAAs) by expression of chimeric antigen receptors (CARs) can produce tumor responses, even in patients with resistant malignancies. To target pancreatic ductal adenocarcinoma (PDAC), we generated T cells expressing a CAR directed to the TAA prostate stem cell antigen (PSCA). T cells expressing this CAR were able to kill PSCA(+) tumor cell lines CAPAN1 and K562-PSCA but not PSCA(-)293T cells (74±4%, 73±6% and 9±3% specific lysis, respectively, 10:1 E:T, n=3). Although these CAR-T cells had potent anti-tumor activity, pancreatic tumors employ immune evasion strategies such as the production of inhibitory cytokines, which limit in vivo CAR-T cell persistence and effector function. Indeed, when we examined the serum of patients with pancreatic cancer (n=8) we found the levels of the immunosuppressive cytokine IL4 to be elevated relative to patients with benign pancreatic disorders or normal healthy controls (14.25±19.48 pg/mL vs 7.28±9.03 vs 1.13±1.42 pg/mL). Thus, to protect our CAR-PSCA T cells from the negative influences of IL-4, we generated a chimeric cytokine receptor in which the IL4 receptor exodomain was fused to the IL7 receptor endodomain (IL4/7 ChR). Transgenic expression of this molecule in CAR-PSCA T cells can invert the inhibitory effects of tumor-derived IL4 to instead promote the proliferation of the effector CAR T cells. In preliminary experiments, we successfully co-expressed both CAR-PSCA and IL4/7 ChR (47.5±12.3% double-positive cells, n=4) on primary T cells. These T cells retained their tumor-specific activity (80±8% specific lysis against CAPAN1, 10:1 E:T, n=3) and when cultured in conditions that mimic the tumor milieu (IL4 12.5 ng/ml), CAR-PSCA 4/7R ChR-modified T cells continued to expand (increase from 2×10e6 cells on day 0 to 5.53±8.46×10e10 cells on day 28), unlike unmodified CAR-PSCA T cells which plateaued at 3.84±5.43×10e8 cells (n=4). Indeed, in the presence of IL4, transgenic cells had a selective advantage (comprising 44.8±11.0% of the population on day 0 and 87.6±10.0% on day 28; n=4). However, even after prolonged cytokine exposure these T cells remained both antigen- and cytokine-dependent. In conclusion, CAR-PSCA 4/7 ChR-modified tumor-specific T cells can effectively target pancreatic cancer cells and are equipped to expand, persist, and retain their cytotoxic function even in the presence of high levels of IL4 in the tumor microenvironment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.