Abstract

Genetic immunization is an attractive approach for prophylactic and therapeutic vaccination using synthetic vectors to deliver antigen-encoding nucleic acids. Recently, DNA delivered by a physical means or RNA by liposomes consisting of four different lipids demonstrated good protection in human phase III clinical trials and received Drugs Controller General of India and US FDA approval to protect against COVID-19, respectively. However, the development of a system allowing for efficient and simple delivery of nucleic acids while improving immune response priming has the potential to unleash the full therapeutic potential of genetic immunization. DNA-based gene therapies and vaccines have the potential for rapid development, as exemplified by the recent approval of Collategene, a gene therapy to treat human critical limb ischemia, and ZyCoV, a DNA vaccine delivered by spring-powered jet injector to protect against SARS-CoV2 infection. Recently, we reported amphiphilic block copolymer 704 as a promising synthetic vector for DNA vaccination in various models of human diseases. This vector allows dose sparing of antigen-encoding plasmid DNA. Here, we report the capacity of 704-mediated HIV and anti-hepatocellular carcinoma DNA vaccines to induce the production of specific antibodies against gp120 HIV envelope proteins in mice and against alpha-fetoprotein antigen in non-human primates, respectively. An investigation of the underlying mechanisms showed that 704-mediated vaccination did trigger a strong immune response by (1) allowing a direct DNA delivery into the cytosol, (2) promoting an intracytoplasmic DNA sensing leading to both interferon and NF-κB cascade stimulation, and (3) inducing antigen expression by muscle cells and presentation by antigen-presenting cells, leading to the induction of a robust adaptive response. Overall, our findings suggest that the 704-mediated DNA vaccination platform is an attractive method to develop both prophylactic and therapeutic vaccines.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.