Abstract

Spin dependent tunneling (SDT) wafers were deposited using dc magnetron sputtering. SDT junctions were patterned and connected with one layer of metal lines using photolithography techniques. These junctions have a typical stack structure of Si(100)-Si/sub 3/N/sub 4/-Ru-CoFeB-Al/sub 2/O/sub 3/-CoFeB-Ru-FeCo-CrMnPt with the antiferromagnet CrMnPt layers for pinning at the top. High-resolution transmission electron microscopy (HRTEM) reveals that the CoFeB has an amorphous structure and a smooth interface with the Al/sub 2/O/sub 3/ tunnel barrier. Although it is difficult to pin the amorphous CoFeB directly from the top, the use of a synthetic antiferromagnet (SAF) pinned layer structure allows sufficient rigidity of the reference CoFeB layer. The tunnel junctions were annealed at 250/spl deg/C for 1 h and tested for magneto-transport properties with tunnel magnetoresistive (TMR) values as high as 70.4% at room temperature, which is the highest value ever reported for such a sandwich structure. This TMR value translates to a spin polarization of 51% for CoFeB, which is likely to be higher at lower temperatures. These junctions also have a low coercivity (Hc) and a low parallel coupling field (Hcoupl). The combination of a high TMR, a low Hc, and a low Hcoupl is ideal for magnetic field sensor applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call