Abstract

We study the problem of whether a commutative nonarchimedean Banach ring which is algebraically a field can be topologized by a multiplicative norm. This can fail in general, but it holds for uniform Banach rings under some mild extra conditions. Notably, any perfectoid ring whose underlying ring is a field is a perfectoid field.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.