Abstract
Bidirectional cargo transport along microtubules is carried out by the competing activities of dynein and kinesin motors attached to the same cargo. Despite extensive study, the mechanisms that determine the net rate and directionality of transport for specific cargo under specific intracellular conditions remain under debate. A number of studies are consistent with the “tug-of-war” model, which posits that the emergent behavior results from competing activities of oppositely-directed motors. However, published findings from a number of model systems runs counter to predictions from the tug-of-war model. To frame current and future work, this chapter presents a conceptual model of microtubule-based bidirectional transport that highlights six quantitative parameters: motor number, velocity, stall force, run length, detachment force, and reattachment rate. The relative importance of each parameter to the emergent bidirectional transport behavior is discussed, and the state of knowledge for different kinesin and dynein isoforms is discussed. Finally, mechanisms that regulate bidirectional transport are explored, focusing on the underexplored role of membrane fluidity in multi-motor bidirectional transport.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.