Abstract

ABSTRACT Pancreatic β-cell dysfunction is a key factor in the development of type 2 diabetes. Pancreatic β-cell senescence accelerates abnormal glucose metabolism, which decreases insulin secretion and cell regeneration ability, eventually leading to diabetes. A cholesterol oxidation product, 7-ketocholesterol (7-KC) can affect pancreatic β-cell function. However, its role in pancreatic β-cell senescence has not been reported. We investigated the role of 7-KC in pancreatic β-cell senescence and its underlying molecular mechanism in MIN6 cells. MIN6 cells were treated with 25 μmol/L 7-KC for 24 h and the proportion of senescent cells was detected based on senescence-associated β-galactosidase (SA-β-gal) activity. The cell cycle, DNA damage, and the senescence-associate secretory phenotype (SASP) and protein expression were detected by flow cytometry, immunofluorescence, and western blotting, respectively. 7-KC can significantly increase SA-β-gal activity, promoted G0/G1 arrest, DNA damage, and interleukin-1β expression in MIN6 cells and significantly inhibited insulin synthesis. Further studies indicated that 7-KC induced β-cell senescence by inhibiting the SIRT1/CDK4–Rb – E2F1 signaling pathway.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.