Abstract

Hepatocellular carcinoma (HCC) is one of the most common human malignant tumors. It is known that in the cells of many cancers, including HCC, nuclear translocation and accumulation of YB-1 often indicates a poor prognosis. This nuclear translocation is induced by genotoxic stress resulting from administration of anticancer agents. Accumulation of YB-1 in the nucleus induces the expression of many genes related to cancer aggressiveness. Therefore, compounds capable of inhibiting anticancer drug-induced YB-1 nuclear translocation without cytotoxicity will be a powerful tool for cancer chemotherapy. In the present study, we found that indirubin derivative, 7-hydroxyindirubin strongly inhibited the actinomycin D-induced nuclear translocation of YB-1 more efficiently without showing cytotoxicity in HepG2, a human HCC cells. The compound successfully suppressed the nuclear YB-1-mediated expression of genes such as MDR1, MVP, EGFR, and CXCR4, which are known to disturb cancer treatment. 7-Hydroxyindirubin also increased the susceptibility of drug-resistant HepG2 cells to ActD. It was also demonstrated that 7-hydroxyindirubin inhibits the nuclear translocation of YB-1 with or without phosphorylation at the Ser102 residue.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call