Abstract

6-Shogaol, a pungent agent isolated from Zingiber officinale Roscoe, has been known to have anti-tumor and anti-inflammatory effects. However, the anti-inflammatory effects and biological mechanism of 6-Shogaol in LPS-activated BV2 microglia remains largely unknown. In this study, we evaluated the anti-inflammatory effects of 6-Shogaol in LPS-activated BV2 microglia. 6-Shogaol was administrated 1 h before LPS treatment. The production of inflammatory mediators were detected by ELISA. The expression of NF-κB and PPAR-γ were detected by western blot analysis. Our results revealed that 6-Shogaol inhibited LPS-induced TNF-α, IL-1β, IL-6, and PGE2 production in a concentration dependent manner. Furthermore, 6-Shogaol inhibited LPS-induced NF-κB activation by inhibiting phosphorylation and nuclear translocation of NF-κB p65. In addition, 6-Shogaol could increase the expression of PPAR-γ. Moreover, inhibition of PPAR-γ by GW9662 could prevent the inhibition of 6-Shogaol on LPS-induced inflammatory mediator production. In conclusion, 6-Shogaol inhibits LPS-induced inflammation by activating PPAR-γ.

Highlights

  • The incidence of neurodegenerative disease, Parkinson disease (PD) and Alzheimer’s disease, increased markedly in the last decades [1, 2]

  • 6-Shogaol concentration dependently down-regulated the production of TNF-α, IL-1ß, IL-6, and PGE2 induced by LPS

  • Microglia has been known to play an important role in neurodegenerative diseases [12]

Read more

Summary

Introduction

The incidence of neurodegenerative disease, Parkinson disease (PD) and Alzheimer’s disease, increased markedly in the last decades [1, 2]. The major immune cells in the brain, plays a key role in host defence response to injury or infectious agents [3]. Microglia is exquisitely sensitive to brain injury and disease [4]. Overactivation of microglia leads to the production of inflammatory mediators which plays a critical role in the development of neuroinflammation [5, 6]. Neuroinflammation has recently been implicated as an important mechanism responsible for the pathological processes of neurodegenerative diseases [7, 8]. The identification of agents to inhibit neuroinflammation might be an effective approach for the treatment of neurodegenerative diseases

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.