Abstract

The Internet of Things (IoT) application has becoming progressively in-demand, most notably for the embedded devices (ED). However, each device has its own difference in computational capabilities, memory usage, and energy resources in connecting to the Internet by using Wireless Sensor Networks (WSNs). In order for this to be achievable, the WSNs that form the bulk of the IoT implementation requires a new set of technologies and protocol that would have a defined area, in which it addresses. Thus, IPv6 Low Power Area Network (6LoWPAN) was designed by the Internet Engineering Task Force (IETF) as a standard network for ED. Nevertheless, the communication between ED and 6LoWPAN requires appropriate routing protocols for it to achieve the efficient Quality of Service (QoS). Among the protocols of 6LoWPAN network, RPL is considered to be the best protocol, however its Energy Consumption (EC) and Routing Overhead (RO) is considerably high when it is implemented in a large network. Therefore, this paper would propose the HRPL to enchance the RPL protocol in reducing the EC and RO. In this study, the researchers would present the performance of RPL and HRPL in terms of EC, Control traffic Overhead (CTO) and latency based on the simulation of the 6LoWPAN network in fixed environment using COOJA simulator. The results show HRPL protocol achieves better performance in all the tested topology in terms of EC and CTO. However, the latency of HRPL only improves in chain topology compared with RPL. We found that further research is required to study the relationship between the latency and the load of packet transmission in order to optimize the EC usage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.