Abstract

[6]-Gingerol possesses various beneficial pharmacological and therapeutic properties, including anti-carcinogenic and anti-inflammatory properties and the ability to regulate intestinal contraction. Recently, our group observed that the serosal administration of [6]-gingerol stimulated electrogenic sodium absorption in the rat colon via the capsaicin receptor, TRPV1. TRPV1 is known to be expressed in both the mucosal epithelium and the muscle layers in the colon. In the present study, we assessed whether [6]-gingerol stimulated sodium absorption via TRPV1 in the colonic mucosal epithelium. We compared the effect of [6]-gingerol on TRPV1-dependent colonic sodium absorption in the colon preparation with or without muscle layer. All experiments were performed by measuring the transmural potential difference (ΔPD) in an Ussing chamber system. [6]-Gingerol induced positive ΔPD when administered to the serosal side of the colon, and this effect was significantly larger in the colon preparation without muscle layer than in that with the muscle layer. In the colon preparation without muscle layer, the [6]-gingerol-dependent induction of ΔPD was markedly suppressed by mucosal addition of amiloride, a selective inhibitor of epithelial sodium channel. ΔPD induction by [6]-gingerol was considerably diminished by capsazepine, an inhibitor of the capsaicin receptor TRPV1, but not by AP-18, an inhibitor of TRPA1. These results suggest that [6]-gingerol induces amiloride-sensitive electrogenic sodium absorption in the rat colon via TRPV1 expressed in the colonic mucosal epithelium, and that this effect is independent of TRPV1 in the colonic muscle layer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call