Abstract

The lobster (Homarus americanus) hepato-pancreatic epithelial baso-lateral cell membrane possesses three transport proteins that transfer calcium between the cytoplasm and hemolymph: an ATP-dependent calcium ATPase, a sodium-calcium exchanger, and a verapamil-sensitive cation channel. We used standard centrifugation methods to prepare purified hepato-pancreatic baso-lateral membrane vesicles and a rapid filtration procedure to investigate whether (65)Zn(2+) transfer across this epithelial cell border occurs by any of these previously described transporters for calcium. Baso-lateral membrane vesicles were osmotically reactive and exhibited a time course of uptake that was linear for 10-15 s and approached equilibrium by 120 s. In the absence of sodium, (65)Zn(2+) influx was a hyperbolic function of external zinc concentration and followed the Michaelis-Menten equation for carrier transport. This carrier transport was stimulated by the addition of 150 microM ATP (increase in K(m) and J(max)) and inhibited by the simultaneous presence of 150 micromol l(-1) ATP+250 micromol l(-1) vanadate (decrease in both K(m) and J(max)). In the absence of ATP, (65)Zn(2+) influx was a sigmoidal function of preloaded vesicular sodium concentration (0, 5, 10, 20, 30, 45, and 75 mmol l(-1)) and exhibited a Hill Coefficient of 4.03+/-1.14, consistent with the exchange of 3 Na(+)/1Zn(2+). Using Dixon analysis, calcium was shown to be a competitive inhibitor of baso-lateral membrane vesicle (65)Zn(2+) influx by both the ATP-dependent (K(i)=205 nmol l(-1) Ca(2+)) and sodium-dependent (K(i)=2.47 micromol l(-1) Ca(2+)) transport processes. These results suggest that zinc transport across the lobster hepato-pancreatic baso-lateral membrane largely occurred by the ATP-dependent calcium ATPase and sodium-calcium exchanger carrier proteins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.