Abstract

The transmission of a 65,536-ary quadrature amplitude modulation (QAM) orthogonal frequency division multiplexing (OFDM) signal supported by a hybrid fiber-terahertz (THz) multiple-input multiple-output (MIMO) system at 320 GHz is experimentally demonstrated in this Letter. We adopt the polarization division multiplexing (PDM) technique to double the spectral efficiency. Based on a 23-GBaud 16-QAM link, 2-bit delta-sigma modulation (DSM) quantization enables 65,536-QAM OFDM signal transmission over a 20-km standard single-mode fiber (SSMF) and a 3-m 2 × 2 MIMO wireless delivery, and satisfies the hard-decision forward error correction (HD-FEC) threshold of 3.8 × 10-3, corresponding to a net rate of 60.5 Gbit/s for THz-over-fiber transport. Meanwhile, below the fronthaul error vector magnitude (EVM) threshold of 0.34%, a maximum signal-to-noise ratio (SNR) of 52.6 dB is achieved. To the best of our knowledge, this is the highest modulation order achievable for DSM applications in THz communication.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call