Abstract

The isomeric enrichment of parahydrogen (pH2) gas is readily accomplished by lowering the gas temperature in the presence of a catalyst. This enrichment is often pursued at two distinct temperatures: ∼51% pH2 is generated at liquid nitrogen temperatures (77 K), while nearly 100% pH2 can be produced at 20 K. While the liquid nitrogen cooled generator is attractive due to the low cost of entry, there are benefits to having access to greater than 51% pH2 for enhanced NMR applications. In this work, we introduce a low-cost modification to an existing laboratory-constructed liquid nitrogen cooled pH2 generator that provides ∼ 65% pH2. This modification takes advantage of vacuum-mediated boiling point suppression of liquid nitrogen, allowing the temperature of the liquid to be lowered from 77 K to nitrogen’s triple point of 63 K. The reduced temperature allowed for the generation of parahydrogen fractions of 63–67% at gas flow rates from 20 to 1000 standard cubic centimeters per minute. We compare this to equivalent experiments that did not utilize the temperature-lowering effects of pressure reduction; these controls generally maintained pH2 fractions of ∼ 50%. All results (experimental and control) agree with the theoretically expected parahydrogen generation at these temperatures. This straightforward modification to an existing pH2 generator may be of interest to a broad range of scientists involved with parahydrogen research by introducing a simple and low-cost entryway to increased pH2 fractions using a conventional liquid nitrogen cooled generator.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.