Abstract

64CuCl2 is an economic radiotracer for oncologic PET investigations. In the present study, we characterized the uptake of 64CuCl2 in vivo by µPET/CT in an allograft 4T1-related mouse model (BALB/c) of advanced breast cancer. 18F-FDG was used as a comparator. Twenty-two animals were imaged 7–9 days following 4T1-cell implantation inside mammary glands. Dynamic 64CuCl2 µPET/CT acquisition or iterative static images up to 8 h p.i. were performed. Animal biodistribution and tumor uptake were first evaluated in vivo by µPET analysis and then assessed on tissue specimens. Concerning 18F-FDG µPET, a static acquisition was performed at 15 min and 60 min p.i. Tumor 64CuCl2 accumulation increased from 5 min to 4 h p.i., reaching a maximum value of 5.0 ± 0.20 %ID/g. Liver, brain, and muscle 64CuCl2 accumulation was stable over time. The tumor-to-muscle ratio remained stable from 1 to 8 h p.i., ranging from 3.0 to 3.7. Ex vivo data were consistent with in vivo estimations. The 18F-FDG tumor accumulation was 8.82 ± 1.03 %ID/g, and the tumor-to-muscle ratio was 4.54 ± 1.11. 64CuCl2 PET/CT provides good characterization of the 4T1-related breast cancer model and allows for exploration of non-glycolytic cellular pathways potentially of interest for theragnostic strategies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.