Abstract

Disordered metabolic substrate utilisation has been implicated in the pathogenesis of heart failure (HF). Hyperpolarised (HYP) 13C magnetic resonance, a technique in which the fate of 13C-labelled metabolites can be followed using MR imaging (MRI) or spectroscopy (MRS), has enabled non-invasive assessment of metabolism. The aim of this study was to monitor carbohydrate metabolism alongside cardiac structure, function, and energetics, throughout HF progression. HF was induced in pigs (n = 5) by right ventricular pacing at 188 bpm for 5 weeks. Pigs were examined at weekly time points: cine MRI assessed cardiac structure and function, HYP 13C2-pyruvate was administered intravenously and 13C MRS was used to assess 13C-glutamate production via Krebs cycle, 31P MRS assessed myocardial energetics, and HYP 13C1-pyruvate was administered to enable MRI of H13CO3- production from pyruvate dehydrogenase (PDH). At baseline, pigs had a normal left ventricular (LV) cardiac index (CI) and end diastolic volume (EDVi). The PCr/ATP was 2.3 ± 0.2. The 13C-glutamate/13C2-pyruvate was 4.3 ± 0.9%, and the H13CO3-/13C1-pyruvate ratio was 1.6 ± 0.2%. After 1-2 weeks of pacing, CI decreased to 3.3 ± 0.5 l/min/m2, PCr/ATP decreased to 1.7 ± 0.1, and 13C-glutamate/13C2-pyruvate decreased to 2.1 ± 0.6%. With the onset of HF, EDVi increased to 140.3 ± 14.1 ml/m2 and H13CO3-/13C1-pyruvate decreased to 0.5 ± 0.2%. In the pacing induced HF model, we observed an early defect in Krebs' cycle that occurred alongside impaired cardiac energetics and function. Carbohydrate oxidation via PDH was maintained until the onset of HF. These results suggest the use of metabolic therapies may delay/prevent the onset of heart failure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.