Abstract

BackgroundAnimal bites are considered the thirteenth leading cause of nonfatal ED visits. Epidemiology studies have shown a rise in dog bites during the COVID-19 pandemic in the U.S. In Oct. 2020, we received a facultatively anaerobic, non-hemolytic Gram-negative rod (OL1) from a dog bite wound for identification. 16S rRNA gene sequencing showed OL1 was 95.9% identical to Ottowia pentelensis in the family Comamonadaceae. Our historical sequence database revealed 8 additional isolates (OL2-OL9) from hand wounds/abscesses (including 3 dog bites) since 2012 that had ⩾ 99.8% identity with OL1. Most other Ottowia sp. have been isolated from industrial and food sources, with no reports from patient samples. As these clinical isolates likely represent a novel Ottowia species, we aimed to characterize them using both phenotypic and genomic approaches.MethodsThe OL isolates were tested in API 20 NE panels (8 conventional and 12 assimilation tests) for 4 d. Paired-end genomic DNA libraries (Nextera DNA Flex Library Prep, Illumina) were sequenced as 150 nt reads by Illumina NovaSeq. De novo assembly, annotation, functional prediction, and phylogenetic analyses were performed with Geneious, PATRIC, and web-prediction databases. Strain comparison was done with StrainTypeMer.ResultsAll 9 OL isolates were negative for indole, urea, arginine, esculin, PNPG, glucose fermentation and carbohydrate assimilation tests. Potassium gluconate assimilation and gelatin hydrolysis were positive for 5 and 4 isolates, respectively. StrainTypeMer showed the isolates from different patients were not closely related, but 2 from the same patient were indistinguishable. The estimated genome size was ~3.1 Mbp, with 66.1% G/C, and ~3523 coding genes. Potential virulence factors (BrkB and MviM), multidrug efflux systems (MdtABC-TolC and Bcr/CflA), and 1-2 intact prophages were identified. Genomic phylogenetic analysis with RAxML showed the OL isolates clustered separately from all known Ottowia spp.ConclusionThese OL isolates are fastidious, Gram-negative bacilli from clinical wound specimens, and are associated with dog bites. Genomic and 16S rRNA gene sequence analysis suggests these isolates constitute a novel species within the family Comamonadaceae.Disclosures All Authors: No reported disclosures

Highlights

  • Animal bites are considered the thirteenth leading cause of nonfatal ED visits

  • StrainTypeMer showed the isolates from different patients were not closely related, but 2 from the same patient were indistinguishable

  • Case 1: A 31-year female kidney transplant recipient presented with a thyroglossal duct cyst, as well as swelling of her right metacarpophalangeal joint and left 3rd finger

Read more

Summary

Introduction

Animal bites are considered the thirteenth leading cause of nonfatal ED visits. Epidemiology studies have shown a rise in dog bites during the COVID-19 pandemic in the U.S In Oct. 2020, we received a facultatively anaerobic, non-hemolytic Gram-negative rod (OL1) from a dog bite wound for identification. 16S rRNA gene sequencing showed OL1 was 95.9% identical to Ottowia pentelensis in the family Comamonadaceae. 16S rRNA gene sequencing showed OL1 was 95.9% identical to Ottowia pentelensis in the family Comamonadaceae. Our historical sequence database revealed 8 additional isolates (OL2-OL9) from hand wounds/abscesses (including 3 dog bites) since 2012 that had ⩾ 99.8% identity with OL1. Have been isolated from industrial and food sources, with no reports from patient samples. As these clinical isolates likely represent a novel Ottowia species, we aimed to characterize them using both phenotypic and genomic approaches. Disseminated Mycobacterium kansasii infection is rare in kidney transplant recipients. The diagnosis may not be suspected readily due to non-specific clinical presentation. Accurate and rapid diagnosis of disseminated M. kansasii infections in transplant recipients is important for antimicrobial management

Objectives
Methods
Results
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.