Abstract

Introduction DNA repair enzymes could modulate the individual susceptibility to the genotoxic effect of exposure to ionising radiation (IR). Methods The influence of polymorphisms of XRCC1, XRCC3 and XPD genes on the onset of chromosomal and DNA damage has been investigated in 43 workers exposed to low levels of IR, including 36 healthcare professionals and 7 industrial radiologists (exposed workers), and 43 subjects not occupationally exposed to IR (controls), matched for age. Chromosomal aberrations (CA) and micronuclei (MN) frequencies in peripheral blood lymphocytes were measured according to standard procedures and used as cytogenetic biomarkers, while Tail Intensity (TI) was the parameter of the Comet test used to evaluate oxidative DNA damage. Genotypic variants Arg194Trp, Arg280His and Arg399Gln for XRCC1, Thr241Met for XRCC3 and Lys751Gln for the XPD genes were analysed using the restriction fragment length polymorphism technique. Results Both total CA and chromosome breaks frequencies were significantly higher in the exposed workers than controls (p Discussion Chromosome breaks frequency resulted a valid cytogenetic biomarker for the monitoring of workers exposed to low doses of IR. The presence of single genetic variants reducing the activity of DNA repair enzymes does not seem to determine an increased risk of genotoxic effects of low doses of IR.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call