Abstract

Dopa decarboxylase (DDC) which converts dopa to dopamine is important for cuticular melanization and sclerotization in insects. An antibody to Drosophila DDC was found to precipitate both DDC activity and a 49-kDa polypeptide synthesized by the epidermis of molting Manduca larvae. Using the Drosophila DDC gene, we isolated the Manduca DDC gene which on hybrid selection produced a 49-kDa translation product precipitable by the Drosophila DDC antibody. The 3.1-kb DDC mRNA appeared 12 hr after head capsule slippage (HCS) and reached maximal levels 7 hr later. Peak expression was twofold higher in melanizing allatectomized larvae and could be depressed to normal levels by application of 0.1 μg juvenile hormone I at HCS. Infusion of 1 μg/hr 20-hydroxyecdysone (20-HE) for 18 hr beginning 2 hr after HCS or addition of 1 μg/ml 20-HE to the culture medium for 24 hr prevented the normal increase in DDC mRNA. When Day 2 fourth instar epidermis was explanted before the molting ecdysteroid rise and cultured with 1–3 μg/ml 20-HE for 17 hr and then for 24 hr in hormone-free medium, DDC expression was three- to fourfold higher than that in epidermis cultured in the absence of hormone. Twelve or more hours of incubation with 20-HE was required for an increase in DDC mRNA, but continuous exposure to 20-HE prevented the increase. In all cultures an initial rapid increase in DDC mRNA was observed which decayed with time in vitro and apparently was associated with the wound response. Thus, ecdysteroid during a larval molt is necessary to program the later expression of DDC, but the subsequent decline of the ecdysteroid is required for this expression to occur.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call