Abstract

In this article, we present a new hybrid algorithm to enable and scale the high-performance conjugate gradients (HPCG) benchmark on large-scale heterogeneous systems such as the Tianhe-2. Based on an inner–outer subdomain partitioning strategy, the data distribution between host and device can be balanced adaptively. The overhead of data movement from both the MPI communication and the PCI-E transfer can be significantly reduced by carefully rearranging and fusing operations. A variety of parallelization and optimization techniques for performance-critical kernels are exploited and analyzed to maximize the performance gain on both host and device. We carry out experiments on both a small heterogeneous computer and the world’s largest one, the Tianhe-2. On the small system, a thorough comparison and analysis has been presented to select from different optimization choices. On Tianhe-2, the optimized implementation scales to the full-system level of 3.12 million heterogeneous cores, with an aggregated performance of 623 Tflop/s and a parallel efficiency of 81.2%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.