Abstract

Up to 75% of patients with melanoma develop brain metastases. While immune checkpoint inhibitors (ICI) targeting PD-1 and CTLA4 have revolutionized the treatment of metastatic melanoma, responses within the immune-specialized microenvironment of the brain are not well understood and there is a paucity of animal models to investigate the effect of ICI intracranially. We characterized responses to checkpoint inhibitors in a syngeneic mouse model of melanoma brain metastasis with concurrent intracranial and subcutaneous melanoma. D3UV3 cells (obtained from David Fisher’s laboratory) were derived using UVB irradiation from D4M.3A melanoma cell line and implanted into the striatum using stereotactic injection or subcutaneously injected into the flank of C57BL/6 mice. Mice were then treated with anti-PD-1 antibody, anti-CTLA4 antibody, a combination of anti-PD-1 and anti-CTLA4, or isotype controls. While mice with intracranial melanoma alone had no response to monotherapy with anti-PD-1 or anti-CTLA4 antibody (p=1 and 0.1, respectively), and only a slight response to combination therapy (p=0.049), mice with concurrent subcutaneous tumors had significantly improved responses to anti-PD-1, anti-CTLA4 and combination treatment (p=0.002, 0.01 and 0.01 respectively compared to mice with intracranial tumors alone with equivalent treatment). These results demonstrate that the presence of an extracranial tumor influences response to ICI in pre-clinical mouse models of melanoma brain metastasis. We have therefore established a pre-clinical model with concurrent intracranial and extracranial tumors to better recapitulate the clinically observed context of melanoma brain metastases and lead to a better understanding of the setting in which ICI are effective for patients with this devastating complication.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call