Abstract
Diamond-like carbon (DLC) films deposited by cathodic vacuum arc evaporation (CVAE) have attracted worldwide interest from research groups and industry since the beginning of the 1990s. Hydrogen-free amorphous carbon (a-C) coatings were first deposited by CVAE about two decades after the first description of hydrogenated a-C coatings (a-C:H) deposited by glow-discharge techniques. This paper highlights the development and broad potential of hard a-C coatings deposited by direct (DCVAE) and filtered (FCVAE) cathodic arc evaporation, including pulsed arc.DLC films offer a wide range of exceptional physical (optical, electrical), chemical (interaction with media), mechanical (hardness, elastic modulus), biomedical and tribological properties. Monolithic tetrahedrally-bonded hydrogen-free coatings (ta-C) provide the highest hardness, while various softer a-C coatings are also useful in some applications. Many film properties such as electrical conductivity and surface energy can be modified by alloying with elements such as H, N, Si, B, F, P and metals. Recent research and industrial solutions for generating DLC coatings by CVAE of carbon-based cathodes are described, and hybrid methods using metal cathodes and gas-phase sources are discussed. Coatings containing additional elements and having complex architectures are also discussed, and selected properties for various coating types are presented.The number of industrial applications of ta-C and a-C coatings continues to increase, mainly for tribological coatings to reduce wear and friction. Various applications of coatings deposited by CVAE are described, including data hard disks, engine parts, razor blades, valve seals, decorative coatings, cutting and forming tools, biomedical products and others.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.