Abstract

The effect of 60-h sleep deprivation (SD) on physical performance and motor control was studied. Twenty cadets were measured for aerobic performance (VO2) before and immediately after the SD period. Maximal strength and EMG of the knee extensor muscles were measured before and after 60 h of SD. Balance, reaction times and motor control were assessed every evening and morning during the SD period. Main effects were observed for heart rate (p = 0.002, partial eta squared: 0.669), VO2 (p = 0.004, partial eta squared: 0.621), ventilation (p = 0.016, partial eta squared: 0.049), and lactate concentration (p = 0.022, partial eta squared: 0.501), whereas RER remained unaltered (p = 0.213, partial eta squared: 0.166). Pairwise comparisons revealed decreased values at submaximal loads in heart rate, VO2, ventilation (all p < 0.05) but not in RER, whereas all of their respective maximal values remained unchanged. Moreover, pairwise comparisons revealed decreased lactate concentration at maximal performance but only at 8-min time point during submaximal workloads (p < 0.05). Pairwise comparisons of maximal strength, EMG and rate of force development revealed no change after SD. Main effects were observed for motor and postural control, as well as for reaction times (all p < 0.05), whereas pairwise comparison did not reveal a consistent pattern of change. In conclusion, motor control can mostly be maintained during 60-h SD, and maximal neuromuscular and aerobic performances are unaffected. However, submaximal cardiorespiratory responses seem to be attenuated after SD.

Highlights

  • The primary function of sleep has only been poorly evidenced, sleep is being considered as a vital factor in daily life, affecting both mental and physiological functioning (Frank and Benington, 2006)

  • We hypothetized that 60-h sleep deprivation (SD) would lead to changes in aerobic performance, whereas neuromuscular performance would be maintained

  • The present results demonstrated that 60-h SD did not cause changes in maximal aerobic or maximal neuromuscular performances

Read more

Summary

Introduction

The primary function of sleep has only been poorly evidenced, sleep is being considered as a vital factor in daily life, affecting both mental and physiological functioning (Frank and Benington, 2006). SD is a factor affecting performance capacity in prolonged competitions in sports, such as e.g., ultramarathon races (Vernillo et al, 2016). It is not a common feature in any occupation but can occasionally occur in firefighter and military occupations as sustained operations, as well as in some instances in healthcare and industrial manufacturing (Caruso, 2014). In such security and safety occupations the working ability, including mental and physical capabilities, has to be maintained in

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.