Abstract

Future wireless communication infrastructure will rely on terahertz systems that can support an increasing demand for large-bandwidth, ultra-fast wireless data transfer. In order to satisfy this demand, compact, low-power, and low noise sources of terahertz radiation are being developed. A promising route to achieving this goal is combining photonic-integrated optical frequency combs with fast photodiodes for difference frequency generation in the THz. Here, we demonstrate wireless communications using a 300 GHz carrier wave generated via photomixing of two optical tones originating from diode lasers that are injection locked to a dissipative Kerr soliton frequency microcomb. We achieve transfer rates of 80 Gbps using homodyne detection and 60 Gbps transmitting simultaneously both data and clock signals in a dual-path wireless link. This experimental demonstration paves a path toward low-noise and integrated photonic millimeter-wave transceivers for future wireless communication systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call