Abstract

BackgroundInfluenza A viruses of domestic birds originate from the natural reservoir in aquatic birds as a result of interspecies transmission and adaptation to new host species. We previously noticed that influenza viruses isolated from distinct orders of aquatic and terrestrial birds may differ in their fine receptor-binding specificity by recognizing the structure of the inner parts of Neu5Acα2-3Gal-terminated sialyloligosaccharide receptors. To further characterize these differences, we studied receptor-binding properties of a large panel of influenza A viruses from wild aquatic birds, poultry, pigs and horses.ResultsUsing a competitive solid-phase binding assay, we determined viral binding to polymeric conjugates of sialyloligosaccharides differing by the type of Neu5Acα-Gal linkage and by the structure of the more distant parts of the oligosaccharide chain. Influenza viruses isolated from terrestrial poultry differed from duck viruses by an enhanced binding to sulfated and/or fucosylated Neu5Acα2-3Gal-containing sialyloligosaccharides. Most of the poultry viruses tested shared a high binding affinity for the 6-sulfo sialyl Lewis X (Su-SLex). Efficient binding of poultry viruses to Su-SLex was often accompanied by their ability to bind to Neu5Acα2-6Gal-terminated (human-type) receptors. Such a dual receptor-binding specificity was demonstrated for the North American and Eurasian H7 viruses, H9N2 Eurasian poultry viruses, and H1, H3 and H9 avian-like virus isolates from pigs.ConclusionInfluenza viruses of terrestrial poultry differ from ancestral duck viruses by enhanced binding to sulfated and/or fucosylated Neu5Acα2-3Gal-terminated receptors and, occasionally, by the ability to bind to Neu5Acα2-6Gal-terminated (human-type) receptors. These findings suggest that the adaptation to receptors in poultry can enhance the potential of an avian virus for avian-to-human transmission and pandemic spread.

Highlights

  • Influenza A viruses of domestic birds originate from the natural reservoir in aquatic birds as a result of interspecies transmission and adaptation to new host species

  • Influenza viruses of terrestrial poultry differ from ancestral duck viruses by enhanced binding to sulfated and/or fucosylated Neu5Acα2-3Gal-terminated receptors and, occasionally, by the ability to bind to Neu5Acα2-6Gal-terminated receptors

  • These findings suggest that the adaptation to receptors in poultry can enhance the potential of an avian virus for avian-tohuman transmission and pandemic spread

Read more

Summary

Introduction

Influenza A viruses of domestic birds originate from the natural reservoir in aquatic birds as a result of interspecies transmission and adaptation to new host species. To further characterize these differences, we studied receptor-binding properties of a large panel of influenza A viruses from wild aquatic birds, poultry, pigs and horses. Virus receptor binding specificity was found to correlate with the level of expression of relevant sialic acids determinants on the target cells of different host species. Epithelial cells of human airway epithelium were shown to express high amounts of Neu5Acα2-6Gal-terminated sialyloligosaccharides, duck intestinal epithelium predominantly contains Neu5Acα2-3Gal-terminated receptors while swine tracheal epithelium contains both receptor types [8,9]. It was hypothesized that alteration of receptor specificity of avian viruses in some intermediate host, such as swine, might facilitate their transmission to humans [10]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call