Abstract

Skin is a major target of oxidative stress. Increasing evidence suggests that oxidative stress is the cause of melanocyte disappearance in vitiligo, which is an acquired pigmentary skin disorder characterized by patches of skin that have lost pigmentation. New herbal extracts with antioxidant activity are therefore being studied. 6-Shogaol (6-SG), an active compound from ginger, is capable of attenuating oxidative stress-induced ageing and neurotoxicity. Subsequently, to investigate whether 6-SG could protect melanocytes from oxidative stress, cultured human primary epidermal melanocytes (HEMn-MPs) were treated with hydrogen peroxide (H2O2) in the presence or absence of 6-SG. The 6-SG exhibited protective effects against H2O2-induced cell death by reducing oxidative stress. In addition, the 6-SG treatment activated the Nrf2-antioxidant response element signaling pathway by upregulating the mRNA expression of the antioxidant enzyme heme oxygenase 1 (HO-1), and protein expression of Nrf2, NAD(P)H: quinine oxidoreductase 1 (Nqo1), and HO-1. Furthermore, the 6-SG also displayed protective effects on melanocytes against Rhododendrol-induced oxidative stress. We concluded that 6-SG protects melanocytes against oxidative stress in vitro, and its protective effect is associated with the activation of the Nrf2-antioxidant response element signaling pathway. 6-SG, therefore, has potential for use in the prevention of melanocyte loss in the early stages of vitiligo or other pigmentary disorders.

Highlights

  • Skin is the largest surface barrier organ, providing protection from harmful environmental agents such as pathogens, chemicals, and ultraviolet (UV) light

  • We concluded that 6-SG protects melanocytes against oxidative stress in vitro, and its protective effect is associated with the activation of the Nrf2-antioxidant response element signaling pathway. 6-SG, has potential for use in the prevention of melanocyte loss in the early stages of vitiligo or other pigmentary disorders

  • The viabilities of 0.2 mM H2O2-treated HEMn-MPs reduced to 26.25% for those not treated with H2O2 (Figure 1B); preincubation with 6-SG for 6 h reduced the cytotoxic effects of 0.2 mM H2O2 on melanocytes (Figure 1A)

Read more

Summary

Introduction

Skin is the largest surface barrier organ, providing protection from harmful environmental agents such as pathogens, chemicals, and ultraviolet (UV) light. These external environmental factors directly or indirectly drive the production of various reactive oxidants, which participate in a series of physiological and pathological skin processes. Vitiligo is an acquired chronic depigmenting disease that affects 0.5–2% of the world population. It is characterized by white depigmented patches in the skin, caused by the loss of functioning melanocytes [2,3]. Oxidative stress was shown to play an important role in the development and progression of vitiligo [5,6]. Oxidative stress has been discussed as a promising target for vitiligo drug development

Objectives
Methods
Findings
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.