Abstract

6-Shogaol, an active phenolic compound from ginger (Zingiber officinale), can inhibit the growth of a variety of human cancer cells. Nevertheless, its underlying molecular mechanisms in cervical cancer remain unclear. In this study, we systematically examine the inhibitory effect of 6-shogaol on cervical cancer in vitro and in vivo. Cell proliferation was assessed by CCK8 assay and colony formation assay in HeLa and SiHa cells. We analyzed cell cycle and apoptosis through flow cytometry. GFP-LC3 puncta and transmission electron microscopy were used to observe autophagic bodies. Wound-healing assay and transwell assay were used for evaluating the migration of cells. Western blot was applied to detect protein expression levels. 6-Shogaol could suppress cell proliferation and migration, cause cell cycle arrest in the G2/M phase in HeLa and SiHa cells. Moreover, 6-shogaol triggered the apoptosis process through the mitochondrial pathway by downregulating the expression levels of p-PI3K, p-Akt and p-mTOR. Further research indicated that the induction of apoptosis by 6-shogaol was remarkably decreased after the treatment of ROS scavenger and PI3K agonist. Additionally, 6-shogaol increased the number of LC3-positive puncta and autophagic bodies per cell in both HeLa and SiHa cells. Pretreatment of cells with Bafilomycin A1, an autophagy inhibitor, accelerated 6-shogaol mediated cell apoptosis, suggesting that induction of autophagy by 6-shogaol is suppressive to apoptosis. Furthermore, in vivo data revealed that 6-shogaol significantly inhibited tumor growth and cell proliferation in tumor tissues. These findings suggested that 6-shogaol could be developed as a functional food ingredient, which is potentially used as therapeutic agents for patients with cervical cancer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.