Abstract

This research presents a novel wind power system based on a six-phase doubly-fed induction generator (DFIG). Optimization approaches are required to improve the efficiency of the traditional controllers. This study introduces a blended method for DFIG-based wind power transformation systems that combines quantum process and deep reinforcement learning (QPDRL) to improve control efficiency. It will be driven by using online control algorithms to eliminate the optimizing step and upgrade online control strategies. The proposed QPDRL can prevent local optimum solutions, forecast the future essential phase, and update DFIG-based wind power plants' regulation methods online. For two distinct scenarios, the QPDRL was contrasted with the proportional integral derivative (PID) controller, fractional-order PID, and reinforcement learning (for changeable air velocity, there are two types of arbitrary and step amplitudes). Matlab software was used to experiment. As air velocity variations exist, the findings revealed a 62% reduction in the DC link voltage ripples and a 99% reduction in speed overshoot with wind velocities overrun. Finally, comparing PID controls revealed a 42.15 percent reduction in grid current THD and an 11.38 percent reduction in the generator current.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call