Abstract

It is necessary to conduct virtual training for astronauts on the ground to improve the efficiency and safety of astronauts carrying objects in space. Cooperation between the two astronauts is required when handling massive objects. During this process, it is necessary to obtain the operating force of each astronaut. The research purpose of this paper was to propose an algorithm to map the astronaut’s operation on the VR handle to the human–machine interaction force without the robot’s participation, thereby saving costs. In this paper, a virtual robot simulation model is established, while the controller is designed based on the inverse system method. The virtual human–machine interaction force was obtained based on the inverse dynamics method. The influence of different parameters on the final position of the virtual object was analyzed. The physical engine was integrated into the virtual force sensor to ensure that the human–machine interaction forces of multiple astronauts can be coupled. The results showed that the virtual human–machine interaction force is similar to the real one and has a low output noise (approximately 5.5 N). This force can be applied to astronaut collaborative virtual training.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call