Abstract
Activation of the glucagon-like peptide-1 (GLP-1) receptor stimulates insulin release, lowers plasma glucose levels, delays gastric emptying, increases satiety, suppresses food intake, and affords weight loss in humans. These beneficial attributes have made peptide-based agonists valuable tools for the treatment of type 2 diabetes mellitus and obesity. However, efficient, and consistent delivery of peptide agents generally requires subcutaneous injection, which can reduce patient utilization. Traditional orally absorbed small molecules for this target may offer improved patient compliance as well as the opportunity for co-formulation with other oral therapeutics. Herein, we describe an SAR investigation leading to small-molecule GLP-1 receptor agonists that represent a series that parallels the recently reported clinical candidate danuglipron. In the event, identification of a benzyloxypyrimidine lead, using a sensitized high-throughput GLP-1 agonist assay, was followed by optimization of the SAR using substituent modifications analogous to those discovered in the danuglipron series. A new series of 6-azaspiro[2.5]octane molecules was optimized into potent GLP-1 agonists. Information gleaned from cryogenic electron microscope structures was used to rationalize the SAR of the optimized compounds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.