Abstract

Human immunodeficiency virus (HIV) reverse transcriptase (RT) associated ribonuclease H (RNase H) remains the only virally encoded enzymatic function not targeted by current drugs. Although a few chemotypes have been reported to inhibit HIV RNase H in biochemical assays, their general lack of significant antiviral activity in cell culture necessitates continued efforts in identifying highly potent RNase H inhibitors to confer antiviral activity. We report herein the design, synthesis, biochemical and antiviral evaluations of a new 6-arylthio subtype of the 3-hydroxypyrimidine-2,4-dione (HPD) chemotype. In biochemical assays these new analogues inhibited RT RNase H in single-digit nanomolar range without inhibiting RT polymerase (pol) at concentrations up to 10 μM, amounting to exceptional biochemical inhibitory selectivity. Many analogues also inhibited integrase strand transfer (INST) activity in low to sub micromolar range. More importantly, most analogues inhibited HIV in low micromolar range without cytotoxicity. In the end, compound 13j (RNase H IC50 = 0.005 μM; RT pol IC50 = 10 μM; INST IC50 = 4.0 μM; antiviral EC50 = 7.7 μM; CC50 > 100 μM) represents the best analogues within this series. These results characterize the new 6-arylthio-HPD subtype as a promising scaffold for HIV RNase H inhibitor discovery.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.