Abstract

Clinical extensive application of indocyanine green (ICG) is limited by several drawbacks such as poor bioenvironmental stability, aggregate propensity, and rapid elimination from the body, etc. In this study, we construct a novel amphiphilic mPEG-ACA-ICG conjugate by modifying synthetic heptamethine cyanine derivative ICG-COOH with a hydrophobic linker 6-aminocaproic acid (ACA) and amino-terminal poly(ethylene glycol) (mPEG-NH2). The as-prepared mPEG-ACA-ICG conjugate has the ability to self-assemble into micellar aggregates in an aqueous solution with a lower CMC value than mPEG-ICG conjugate without ACA linker. More importantly, compared with free ICG and mPEG-ICG conjugate, mPEG-ACA-ICG nanomicelles exhibited better stability and higher photothermal conversion efficiency upon near-infrared light irradiation due to the intramolecular introduction of a hydrophobic ACA segment. In our in vivo experiment, mPEG-ACA-ICG nanomicelles ensured the formidable effect on tumor photothermal therapy (PTT) and the maximum tumor inhibition rate reached 72.6 %. In addition, real-time determination ability for fluorescence image-guided surgery (FIGS) of mPEG-ACA-ICG nanomicelles was also confirmed on tumor xenograft mice model. Taken together, mPEG-ACA-ICG conjugate may hold great promise for non-invasive cancer theranostics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call