Abstract

Here, we report the synthesis of the 6-(6-methyl-1,2,4,5-tetrazine-3-yl)-2,2'-bipyridine (MTB) ligand that has been developed for lanthanide/actinide separation. A multimethod study of the complexation of MTB with trivalent actinide and lanthanide ions is presented. Single-crystal X-ray diffraction measurements reveal the formation of [Ce(MTB)2(NO3)3], [Pr(MTB)(NO3)3H2O], and [Ln(MTB)(NO3)3MeCN] (Ln = Nd, Sm, Eu, Gd). In addition, the complexation of Cm(III) with MTB in solution was studied by time-resolved laser fluorescence spectroscopy. The results show the formation of [Cm(MTB)1-3]3+ complexes, which occur in two different isomers. Quantum chemical calculations reveal an energy difference between these isomers of 12 kJ mol-1, clarifying the initial observations made by time-resolved laser fluorescence spectroscopy (TRLFS). Furthermore, quantum theory of atoms in molecules (QTAIM) analysis of the Cm(III) and Ln(III) complexes was performed, indicating a stronger covalent contribution in the Cm-N interaction compared to the respective Ln-N interaction. These findings align well with extraction data showing a preferred extraction of Am and Cm over lanthanides (e.g., max. SFAm/Eu = 8.3) at nitric acid concentrations <0.1 mol L-1 HNO3.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.