Abstract

A new preparation method of near-net-shape 6.5 wt% Si high silicon steel sheets was proposed by combining composite electrodeposition (CED) and diffusion annealing under magnetic field. The obtained sheets were characterized by scanning electron microscopy, energy dispersive spectrometry, analytical balance and a silicon steel material measurement system. The results show that the surface morphology, the elemental distribution, the cathode current efficiency and the silicon content of coatings were obviously influenced by the micro and macro magnetohydrodynamics (MHD) flows under magnetic field. With the effect of magnetic field, the silicon particles content of coatings showed an increasing trend and the diffusion process showed that an approximately uniform 6.5 wt% silicon steel sheet has been successfully obtained. The magnetism measurement showed that the high silicon steel sheet has the lower iron loss, and the iron loss further decreased under magnetic field. The new method proposed in this article, which is more environmentally friendly and low energy consumption, is feasible to prepare high silicon steel sheets.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call