Abstract
Saturated fluorotelomer carboxylic acids (FTCAs) are intermediates in the degradation of fluorotelomer alcohols (FTOHs) to perfluorinated carboxylic acids (PFCAs). Recent studies have detected FTCAs in precipitation, surface waters, and wildlife, but few studies have focused on their toxicity. In this study, zebrafish embryos were exposed to different concentrations of 6:2 FTCA (0, 4, 8, and 12mg/L) from 6 to 120h post-fertilization (hpf) to investigate its developmental toxicity. Results showed that 6:2 FTCA exposure decreased the hatching and survival percentages, reduced the heart rate, and increased the malformation of zebrafish embryos. The median lethal concentration of 6:2 FTCA was 7.33mg/L at 120 hpf, which was lower than that of perfluorooctanoic acid (PFOA), thus indicating higher toxicity for zebrafish. The most common developmental malformation was pericardial edema, which appeared in the 8 and 12mg/L 6:2 FTCA-exposed embryos from 60 hpf. Using o-dianisidine staining, we found that the hemoglobin content in embryos was reduced in a concentration-dependent manner after 6:2 FTCA exposure at 72 hpf. Based on quantitative real-time polymerase chain reaction (q-RT-PCR) and whole-mount in situ hybridization, the transcriptional levels of hemoglobin markers (hbae1, hbbe1, and hbae3) were down-regulated at 48 and 72 hpf, even though no observed malformation appeared in zebrafish at 48 hpf. Moreover, 6:2 FTCA exposure decreased the protein level of gata1, a principal early erythrocytic marker, in Tg (gata1:DsRed) transgenic zebrafish at 72 hpf. We analyzed the transcriptional level of other erythrocyte-related genes using q-RT-PCR assay. For heme formation, the transcription of alas2, which encodes the key enzyme for heme biosynthesis, was down-regulated after 6:2 FTCA exposure, whereas the transcription of ho-1, which is related to heme degradation, was up-regulated at 48 and 72 hpf. The transcriptional patterns of gata1 and gata2, which are related to erythroid differentiation, differed. At 48 hpf, the mRNA level of gata2 was significantly increased, whereas that of gata1 exhibited no significant changes in any treatment group. At 72 hpf, the expressions of both were down-regulated in a concentration-dependent manner. Taken together, 6:2 FTCA exposure decreased the erythrocyte number and disrupted erythroid differentiation during zebrafish embryonic development. Our results suggest that 6:2 FTCA can cause developmental toxicity in zebrafish embryos, and that FTCAs exhibit greater toxicity than that of PFCAs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.