Abstract

There is an ever increasing demand to increase the gravimetric and volumetric energy density of Lithium batteries as well as enhancing their safety cycle life and lower safety. Solid-State batteries (SSB) enjoy a great attention nowadays due to their potential to meet all those requirements and power the EV revolution. The use of solid electrolytes (SE) in commercial batteries has been solely limited to polymer electrolytes based on poly(ethylene oxide), PEO, coupled with LiFePO4 (LFP) that are limited by the oxidative stability of PEO to < 3.6 V and the low potential of LFP at 3.4 V. The commercial cells are cycled at high temperature (45 ⁰C) to overcome the modest ambient ionic conductivity of the SE and under a stack pressure and a cathode composite to overcome the high interfacial resistances of the solid-solid interfaces. A cathode composite is made of conventional cathode components with a "catholyte" added to the formulation. The catholyte is made of an optimized amount of an ionic conductor that is mostly derived from the solid electrolyte formulation. Very recent studies by our research group (1) and others (2) have shown that higher voltage cells can be made by using garnet or perovskite-based ceramic/polymer composites and LiNi0.5Mn0.3Co0.2O2 (NMC532) or LiNi0.6Mn0.2Co0.2O2 (NMC 622) layered cathodes reaching 4.2 V and can operate for few cycles. Herein, we extend the work in order to further increase the voltage of the SSB cells by using LiNi0.5Mn1.5O4 (LNMO) spinel cathode with its high potential of 4.7 V. The Tantalum-doped Lithium Lanthanum Zirconate, Li6.4La3Zr1.4Ta0.6O12 (Ta-doped LLZO, LLZTO), of the garnet family of solid electrolytes has been selected as a SE due to their high ambient ionic conductivity, wide electrochemical stability window and good chemical stability against Li metal. PEO and other compatible polymers have been used to formulate composite SEs in thin films and their properties were studied and compared with LLZTO pellets. Cells have been made using composite cathode formulations composed of LNMO cathode as an active material, carbon black, conventional and novel binders and a SE-based and proprietary catholyte coupled with the SE films or pellets and thick/thin Li films. The short-term cycling performance of the cells assembled with selected SEs and composite cathodes along with other electrochemical results will be presented.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call