Abstract
Both photochemical aromatic substitution and palladium (0)-catalyzed biaryl coupling reactions have been employed in the synthesis of 5-substituted 2'-deoxyuridines. The former procedure was useful in the preparation of the 3,4-dimethyl-2,5-dimethoxyphenyl derivative 12a and the 3,4,6-trimethyl-2,5-dimethoxyphenyl derivative 12b. The latter reaction was efficient in the preparation of the 2-(3-methyl-1,4-dimethoxynaphthyl) derivative 14. These compounds and their nucleotides (20a-c) were converted to the corresponding quinone nucleosides 19a-c and nucleotides 6-8 by an oxidative demethylation reaction using ceric ammonium nitrate and silver(II) oxide, respectively. The kinetics and products of the reaction of the quinone nucleosides 19a,b with methyl thioglycolate showed rapid addition to the quinone ring in the trisubstituted derivative 19a and somewhat slower redox reactions with the tetrasubstituted quinones 19b and 19c. All six nucleotides had high affinity for the title enzyme from Lactobacillus casei with Ki values ranging from 0.59 to 3.6 microM; the most effective compounds were the dimethyl quinone 6 and the naphthoquinone 8. Somewhat higher inhibitory constants were observed with the quinones against the L1210 enzyme. The dimethyl quinone nucleotide 6 showed time-dependent inactivation (kinact = 0.015 s-1) against the L. casei enzyme, a rate saturation effect, and substrate protection in accord with the kinetic expression for an active-site-directed alkylating agent. The apparent second-order rate of this reaction (2.5 X 10(4) M-1 s-1) is one-twentieth the rate (kcat.) of the normal enzymatic reaction leading to product. None of the compound exhibited sufficient activity in the antitumor cell or antiviral assays to warrant further study.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.