Abstract

Sprouting of mossy fibers in the hippocampus of rats that underwent limbic epileptogenesis by amygdala kindling or kainate injection was studied at the light microscopic and ultrastructural levels by cytochemical demonstration of the enzyme 5′-nucleotidase. This adenosine-producing ectoenzyme has previously been shown to characterize malleable terminals during brain development and lesion-induced synaptogenesis, but to be otherwise associated with glial membranes. At the light microscopic level, kainate-treated but not control or kindled rats showed 5′-nucleotidase activity in the CA3 region and in the inner molecular layer of the dentate gyrus. At the ultrastructural level, in control animals, the synapses of the molecular and granular layers were enzyme negative. Only some mossy fiber boutons of the dentate hilus exhibited 5′-nucleotidase activity. In epileptic rats, synaptic labeling within the hilus appeared more intense. Moreover, 5′-nucleotidase-containing terminals within the inner molecular layer, presumably ectopic mossy fiber boutons, were found in both kindled and kainate-treated rats. It is concluded that, in both the normal and epileptic hippocampus, 5′-nucleotidase is associated with axons capable of a plastic sprouting response. The synaptic enzyme may attenuate the glutamatergic transmission of mossy fibers, in particular of the aberrant mossy fibers in epileptic rats, by producing the inhibitory neuromodulator adenosine. Alternatively, 5′-nucleotidase may influence synapse formation by its putative non-enzymatic, adhesive functions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call