Abstract

The present study was designed to investigate the hypothesis that agonist interactions at 5-HT2C receptors mediate the discriminative stimulus properties of m-chlorophenylpiperazine (mCPP). Three structural classes of compounds have been described to stimulate increases in phosphoinositide (PI) hydrolysis at the 5-HT2C receptor site: phenylpiperazines, phenylalkylamines, and indolamines. Four representative phenylpiperazines, mCPP, TFMPP, MK-212 and quipazine, one phenylalkylamine, (-)DOM, and one indolamine, LSD, were employed in the present study. The efficacies of these compounds were defined (1) in vitro, with respect to their abilities to stimulate increases in PI hydrolysis in the choroid plexus, and (2) in vivo with respect to their abilities to substitute for the mCPP discriminative stimulus. In vitro intrinsic activity at the 5-HT2C site was expressed as a fraction of the maximal PI hydrolysis response elicited by serotonin (5-HT). MK-212 (fractional efficacy = 1.1) and (-)DOM (0.77) were full agonists, while mCPP (0.72), LSD (0.27), quipazine (0.24), and TFMPP (0.22) were partial agonists with respect to the stimulation of PI hydrolysis at the 5-HT2C receptor. In vivo, each of the phenylpiperazines fully substituted for the mCPP stimulus, while (-)DOM (75%), and LSD (67%) elicited only partial substitution. While compounds with agonist activity at the 5-HT2C receptor in vitro substitute for the mCPP stimulus in vivo, no clear relationship exists between in vitro intrinsic activity at the 5-HT2C receptor with respect to the stimulation of PI turnover and maximal substitution for the mCPP stimulus in vivo. The present data suggest that mCPP elicits a compound stimulus which is mediated by agonist interactions at the 5-HT2C receptor and possibly additional interactions with 5-HT2A, 5-HT3, and/or 5-HT1B receptors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.