Abstract

Background: Acute treatment with the selective serotonin reuptake inhibitor (SSRI), fluoxetine (Flx), induces anxiety-like behavioral effects. The serotonin2A receptor (5-HT2A) is implicated in the modulation of anxiety-like behavior, however its contribution to the anxiogenic effects of acute Flx remains unclear. Here, we examined the role of the 5-HT2A receptor in the effects of acute Flx on anxiety-like behavior, serum corticosterone levels, neural activation and immediate early gene (IEG) expression in stress-responsive brain regions, using 5-HT2A receptor knockout (5-HT2A−/−) mice of both sexes. Methods: 5-HT2A−/− and wild-type (WT) male and female mice received a single administration of Flx or vehicle, and were examined for anxiety-like behavior, serum corticosterone levels, FBJ murine osteosarcoma viral oncogene homolog peptide (c-Fos) positive cell numbers in stress-responsive brain regions of the hypothalamus and prefrontal cortex (PFC), and PFC IEG expression. Results: The increased anxiety-like behavior and enhanced corticosterone levels evoked by acute Flx were unaltered in 5-HT2A−/− mice of both sexes. 5-HT2A−/− female mice exhibited a diminished neural activation in the hypothalamus in response to acute Flx. Further, 5-HT2A−/− male, but not female, mice displayed altered baseline expression of several IEGs (brain-derived neurotrophic factor (Bdnf), Egr2, Egr4, FBJ osteosarcoma gene (Fos), FBJ murine osteosarcoma viral oncogene homolog B (Fosb), Fos-like antigen 2 (Fosl2), Homer scaffolding protein (Homer) 1-3 (Homer1-3), Jun proto-oncogene (Jun)) in the PFC. Conclusion: Our results indicate that the increased anxiety and serum corticosterone levels evoked by acute Flx are not influenced by 5-HT2A receptor deficiency. However, the loss of function of the 5-HT2A receptor alters the degree of neural activation of the paraventricular nucleus (PVN) of the hypothalamus in response to acute Flx, and baseline expression of several IEGs in the PFC in a sexually dimorphic manner.

Highlights

  • Selective serotonin reuptake inhibitors (SSRIs), including fluoxetine (Flx), are the most commonly prescribed antidepressants given their improved side effect profile compared with other major classes of antidepressants [1]

  • Our results indicate that similar to WT mice, adult serotonin2A receptor (5-HT2A)−/− male and female mice both exhibit acute Flx-induced increases in anxiety-like behavioral responses on the open-field test (OFT) and elevated plus-maze test (EPM), indicating that 5-HT2A receptor deficiency does not influence the anxiogenic effects of acute Flx

  • We find that the acute Flx-mediated elevation of serum corticosterone levels is observed in both WT and 5-HT2A−/− male and female mice, indicating that the effects of acute Flx on enhanced corticosterone levels do not appear to involve a role for the 5-HT2A receptor

Read more

Summary

Background

Acute treatment with the selective serotonin reuptake inhibitor (SSRI), fluoxetine (Flx), induces anxiety-like behavioral effects. We examined the role of the 5-HT2A receptor in the effects of acute Flx on anxiety-like behavior, serum corticosterone levels, neural activation and immediate early gene (IEG) expression in stress-responsive brain regions, using 5-HT2A receptor knockout (5-HT2A−/−) mice of both sexes. Methods: 5-HT2A−/− and wild-type (WT) male and female mice received a single administration of Flx or vehicle, and were examined for anxiety-like behavior, serum corticosterone levels, FBJ murine osteosarcoma viral oncogene homolog peptide (c-Fos) positive cell numbers in stress-responsive brain regions of the hypothalamus and prefrontal cortex (PFC), and PFC IEG expression. Results: The increased anxiety-like behavior and enhanced corticosterone levels evoked by acute Flx were unaltered in 5-HT2A−/− mice of both sexes. Accepted Manuscript Online: 18 January 2019 Version of Record published: 01 February 2019

Introduction
Experimental procedures
Results
Findings
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.