Abstract
Generation of receptor knockout mice has offered a new approach to study processes underlying anxiety. In this paper, studies focusing on anxiety using 5-HT1A receptor knockout (1AKO) and 5-HT1B receptor knockout (1BKO) mice are reviewed. 1AKO mice on different genetic background strains have initially been described as more anxious. In 1AKO mice on the 129/Sv background strain, the initial findings could not always be replicated, although under certain conditions, mild anxiety-like responses were observed in these 1AKO mice. In 1BKO mice, some indications of reduced anxiety have been found, but these observations may be confounded partly with increased motor impulsivity of these mutants. To study whether the putative effects of the null mutations on anxiety were reflected in the autonomic nervous system, basal heart rate and body temperature of 1AKO and 1BKO mice were measured, as well as their autonomic responses to novel cage exposure and to reversal of the light-dark rhythm. 1AKO mice did not differ from wild-type mice in any parameter, neither under non-stress conditions, nor following novel cage exposure. In 1BKO mice, basal heart rate was reduced and body temperature was increased. 1BKO mice showed exaggerated autonomic responses to novel cage stress. Adaptation to the reversal of the light-dark cycle was comparable in the three genotypes. The stress-induced hyperthermia procedure showed no differential responses of the three genotypes to the stressor. Pharmacological responses to various psychotropic drugs in the stress-induced hyperthermia test were also comparable in 1AKO, 1BKO and wild-type mice. The present data illustrate the complexity of studying the behavioural and physiological consequences of deletion of genes coding for important receptors in the CNS.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.