Abstract
With the advent of the 5G era, due to the limited network resources and methods before, it cannot be guaranteed that all services can be carried out. In the 5G era, network services are not limited to mobile phones and computers but support the normal operation of equipment in all walks of life. There are more and more scenarios and more and more complex scenarios, and more convenient and fast methods are needed to assist network services. In order to better perform network offloading of the business, make the business more refined, and assist the better development of 5G network technology, this article proposes 5G network slicing: methods to support blockchain and reinforcement learning, aiming to improve the efficiency of network services. The research results of the article show the following: (1) In the model testing stage, the research results on the variation of the delay with the number of slices show that the delay increases with the increase of the number of slices, but the blockchain + reinforcement learning method has the lowest delay. The minimum delay can be maintained. When the number of slices is 3, the delay is 155 ms. (2) The comparison of the latency of different types of slices shows that the latency of 5G network slicing is lower than that of 4G, 3G, and 2G network slicing, and the minimum latency of 5G network slicing using blockchain and reinforcement learning is only 15 ms. (3) In the detection of system reliability, reliability decreases as the number of users increases because reliability is related to time delay. The greater the transmission delay, the lower the reliability. The reliability of supporting blockchain + reinforcement learning method is the highest, with a reliability of 0.95. (4) Through the resource utilization experiment of different slices, it can be known that the method of blockchain + reinforcement learning has the highest resource utilization. The resource utilization rate of the four slices under the blockchain + reinforcement learning method is all above 0.8 and the highest is 1. (5) Through the simulation test of the experiment, the results show that the average receiving throughput of video stream 1 is higher than that of video stream 2, IOT devices and mobile devices, and the average cumulative receiving throughput under the blockchain + reinforcement learning method. The highest is 1450 kbps. The average QOE of video stream 1 is higher than that of video stream 2, IOT devices and mobile devices, and the average QOE is the highest under the blockchain + reinforcement learning method, reaching 0.83.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.