Abstract

The speed of internet has increased dramatically with the introduction of 4G and 5G promises an even greater transmission rate with coverage outdoors and indoors in smart cities. This indicates that the introduction of 5G might result in replacing the Wi-Fi that is being currently used for applications such as geo-location using continuous radio coverage there by initiating the involvement of IoT in all devices that are used. The introduction of Wi-Fi 6 is already underway for applications that work with IoT, smart city applications will still require 5G to provide internet services using Big Data to reduce the requirement of mobile networks and additional private network infrastructure. However, as the network access begins to expand, it also introduces the risk of cyber security with the enhanced connectivity in the networking. Additional digital targets will be given to the cyber attackers and independent services will also be sharing access channel infrastructure between mobile and wireless network. In order to address these issues, we have introduced a random neural network blockchain technology that can be used to strengthen cybersecurity in many applications. Here the identity of the user is maintained as a secret while the information is codified using neural weights. However, when a cyber security breach occurs, the attacker will be easily tracked by mining the confidential identity. Thus a reliable and decentralized means of authentication method is proposed in this work. The results thus obtained are validated and shows that the introduction of the random neural network using blockchain improves connectivity, decentralized user access and cyber security resilience.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.