Abstract

Weakly-coupled multicore fibers (MCFs) have been proposed to support the huge data capacity demanded by future 5G fronthauls. However, in MCFs, intercore crosstalk (ICXT), i.e., power coupling between different MCF cores, can degrade significantly the performance of the 5G fronthaul, particularly, when using Common Public Radio Interface (CPRI) signals and direct-detection at the optical receiver. In this work, the performance degradation induced by ICXT in 5G fronthauls with MCFs and direct-detection is assessed by numerical simulation. We show that the study of the outage probability is essential to ensure the reliability and the good quality of service in 5G fronthauls supported by MCFs impaired by ICXT with CPRI signals transmission. The ICXT level that leads to an outage probability of 104 is more than 5.6 dB lower than the ICXT level necessary to reach the power penalty of 1 dB. Our results also indicate that fronthaul systems with lower extinction ratio exhibit an higher tolerance to ICXT.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.