Abstract
5G has been designed for blazing fast and low-latency communications. To do so, mm-wave frequencies were adopted and allowed unprecedently high radiated power densities by the FCC. Unknowingly, the architects of 5G have, thereby, created a wireless power grid capable of powering devices at ranges far exceeding the capabilities of any existing technologies. However, this potential could only be realized if a fundamental trade-off in wireless energy harvesting could be circumvented. Here, we propose a solution that breaks the usual paradigm, imprisoned in the trade-off between rectenna angular coverage and turn-on sensitivity. The concept relies on the implementation of a Rotman lens between the antennas and the rectifiers. The printed, flexible mm-wave lens allows robust and bending-resilient operation over more than 20 GHz of gain and angular bandwidths. Antenna sub-arrays, rectifiers and DC combiners are then added to the structure to demonstrate its combination of large angular coverage and turn-on sensitivity—in both planar and bent conditions—and a harvesting ability up to a distance of 2.83 m in its current configuration and exceeding 180 m using state-of-the-art rectifiers enabling the harvesting of several μW of DC power (around 6 μW at 180 m with 75 dBm EIRP).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.